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Abstract-Potential distribution problems in electrolytic cells can be separated into two parts, the bulk 
medium where Laplace’s equation holds and the diffusion layer where convection, migration, and 
diffusion are all important modes of mass transfer. The problems in these two domains must still be solved 
simultaneously since the concentrations and the current density at the electrode surface must adjust 
themselves to the available overpotential calculated from the solution of Laplace’s equation. 

Specific results are obtained for the limiting current for arbitrary, two-dimensional and axisymmetric 
diffusion layers. The correction factor for the effect of migration within the diffusion layer is shown to be 

exactly the same as that calculated earlier for a rotating disk electrode. 

NOMENCLATURE 

=051023; 
concentration of species i [mol/ 
cm”] ; 
capacity of the double layer [F/ 
cm*] ; 
diffusion coefficient of species i 

[cm’/s] ; 
symbol for the electron ; 
electric field [V/cm] ; 
expresses dependence of reaction 
rate on surface overpotential; 
Faraday’s constant [96 500 
Cfequiv.] ; 
expresses dependence of surface 
overpotential on current density; 
current density [A/cm’] ; 
dimensionless current density; 
length characteristic of the cell [cm] ; 
symbol for the chemical formula of 
species i ; 
number of electrons transferred in 
electrode reaction; 
flux of species i [mol/cm’-s] ; 
the P&let number, Pe = UL/DR; 
defines position of surface for an 
axisymmetric body [cm] ; 

R, 

Re, 

si, 

Y, 

Zi* 

universal gas constant 
[J/mol-degK]; 
the Reynolds number, Re = UL/v ; 
stoichiometric coefficient in elec- 
trode reaction ; 
the Schmidt number, SC = v/DR; 
time [s] ; 
cation transference number ; 
temperature [degK] ; 
mobility of species i [cm2-mole/J-s] ; 
characteristic velocity [cm/s] ; 
fluid velocity [cm/s] ; 
potential of an electrode [V] ; 
distance measured along an elec- 
trode surface (also used as a Cartesian 
coordinate in the bulk medium) 
[cm] ; 
normal distance from the surface 
(also used as a Cartesian coordinate 
in the bulk medium) [cm] ; 
charge number of species i. 

‘Greek symbols 

BY velocity derivative at the solid elec- 
trode [s- ‘1; 

m,t the gamma function of 4/3, r($) = 
0.89298 ; 
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diffusion layer thickness [cm] ; 
overpotential [VJ ; 
dimensionless concentration ; 
conducti~ty ~mho/cm] ; 
electrochemical potential of species 
i [J/mol J ; 
kinematic viscosity [cm”/s] ; 
number of cations and anions per 
molecule of electrolyte; 
dimensionless independent variable 
[see equations (35) and (47)] ; 
potential appropriate to thediffusion 
layer [VJ ; 
electrostatic potential [V]; 
rotation speed of disk [i-ad/s]. 

Subscripts 
KJ, in the bulk medium ; 
0 at the electrode surface; 
R, limiting reactant ; 

-I-. -, cation and anion, respectively. 

l.INTRODUCTION 

AN EARLIER paper [I] treats the effect of ionic 
migration on limiting currents for four cases: 
the rotating disk, the growing mercury drop, 
penetration into a semi-infinite medium, and 
the stagnant Nernst diffusion layer. These 
earlier results would be more useful if they could 
be applied to a broader class of problems. Here 
it is shown that this is possible; in particular, 
the results already calculated for the rotating 
disk also apply to steady mass transfer in 
arbitrary two-dimensional and axisymmetric 
diffusion layers. The current density is distributed 
along the electrode in the same manner as when 
migration is neglected, but the magnitude of 
the current density at all points is increased or 
diminished by a constant factor which depends 
upon the bulk composition of the solution. The 
magnitude of this effect was calculated earlier [l] 
for redox reactions in a ferro-ferricyanide 
system, discharge of hydrogen ions from KC1 
solutions, deposition of copper from H,SO, 
and MgSO, solutions, and deposition of silver 
from HN03 solutions, 

Examples of other hydrodynamic systems for 
which the rotating-disk results would thus be 
applicable include flow in tubes, annular con- 
duits, and planar channels, bound~y-layer flow 
past flat-plate electrodes or other submerged 
objects suspended in a free stream and stagna- 
tion point flows. 

The justification of the above results is so 
involved that it is not much more work to formu- 
late a procedure for treating the problem of 
current and potential distribution in electrolytic 
cells for currents below, but at an appreciable 
fraction of, the limiting current. Here it is not 
possible to neglect concentration variations 
near electrodes, the surface overpotential associ- 
ated with the electrode reaction, or the ohmic 
potential drop in the bulk of the solution. Most 
previous work neglects either the ohmic potential 
drop in the bulk of the solution or the concentra- 
tion variations, and many works also neglect 
the surface overpotential, 

In many electrolytic cells the concentration 
variations are still restricted to thin diffusion 
layers near the electrodes.This allows an import- 
ant simplification since it allows a separate 
treatment of the two regions-the diffusion 
layer and the bulk solution where the potential 
satisfies Laplace’s equation. However, the two 
regions are still coupled through the boundary 
conditions. A completely analytic treatment of 
such a complex problem is usually not possible, 
but even for a numerical treatment the separa- 
tion into two regions is important because of the 
completely different length scales and mesh 
sizes appropriate to the regions. It is sometimes 
possible [23 to solve each region in terms of series 
solutions, the coefficients of which must be 
determined by a numerical procedure. 

Earlier work 
Early treatments of current distribution in 

electrolytic cells involved the solution of Lap- 
lace’s equation for the potential in the bulk of 
the electrolytic solution. For boundary condi- 
tions the electrodes were taken to be equi- 
potential surfaces, thus neglecting polarization, 
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and the normal component of the current density 
is zero on insulating surfaces. This defines a 
classical problem in mathematical physics, and 
for electrolytic cells the solution yields the so- 
called “primary current distribution”. The 
primary current density is always infinite or 
zero at the edge of an electrode unless the elec- 
trode is perpendicular to an insulating surface 
at its edge. Generally, the primary current distri- 
bution shows that the more inaccessible parts 
of an electrode receive a lower current density. 

When slow electrode reaction kinetics is 
taken into account, the electrolytic solution near 
the electrode is no longer an equipotential 
surface. A wide variety of expressions for the 
electrode polarization has been used which 
reflects the variety of electrode kinetics as well 
as a variety of approximations. The result of 
such a calculation .is the so-called “secondary 
current distribution”. The general effect of 
electrode polarization is to make the secondary 
current distribution more nearly uniform than 
the primary current distribution, and an infinite 
current density at the edge of electrodes is 
eliminated. The mathematical problem now 
involves the solution of Laplace’s equation 
subject to a more complicated, perhaps even 
nonlinear, boundary condition. However, the 
electrode polarization is still a local phenomenon 
in the sense that the potential difference be- 
tween a point on the electrode and the adjacent 
solution depends on the current density only at 
that point but not at other points on the 
boundary. 

There are a considerable number of analytic 
solutions available for primary-current- 
distribution problems and a fair number for 
secondary-current-distribution problems. For 
problems of more complicated geometry and 
boundary conditions, numerical methods and 
solutions have been developed, which in some 
cases may also be easier to use than an available 
analytic solution. For treatments of primary 
and secondary current distribution, see [2-lo]. 

On the other extreme, at very high currents 
the current distribution may be determined en- 

tirely by limited ratesofmass transfer ofa reactant 
from the bulk solution to the electrode surface. 
Since 1942 a considerable theoretical and experi- 
mental effort has been devoted to problems of 
the so-called “limiting current” distribution 
(see [ll-181). The concentration of the limiting 
reactant is zero at the electrode surface, and the 
principles governing the current distribution 
are not essentially different from those governing 
mass transfer in nonelectrolytic solutions. 
Electrochemical systems are, in fact, occasion- 
ally used for mass-transfer studies, where they 
offer the experimental convenience of accurate 
measurement of the rate of mass transfer. 
Problems treated include free and forced con- 
vection with laminar or turbulent flow and the 
usual variety of geometries (conduits and sub- 
merged objects). The potential distribution 
outside the diffusion layer is of no importance as 
long as the local over-potential is high enough 
to reduce the concentration of the limiting 
reactant to zero at the electrode surface. 
(However, the potential distribution may 
occasionally be so non-uniform that a high 
local overpotential causes evolution of hydrogen 
on one part of the electrode before another part 
attains a zero concentration of the limiting 
reactant.) 

For problems of an intermediate nature, 
where concentration variations near the elec- 
trode, slow electrode reaction kinetics, and the 
ohmic potential drop in the solution are all im- 
portant, Asada, Hine, Yoshizawa and Okada 
[19] use a calculation procedure similar to that 
proposed here to treat free convection in a 
rectangular cell with a vertical electrode at each 
end. No detailed justification is given. The 
present author has applied the methods outlined 
here to the rotating disk electrode [2]. 

The author is preparing a more extensive 
review of these various aspects of current distri- 
bution and mass transfer in electrochemical 
systems [20]. 

Scope of the present work 
The next section of this paper shows how one 
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should calculate current distributions taking 
into account both concentration polarization 
and surface polarization at currents below the 
limiting current. The hydrodynamic velocity 
distribution is assumed to be known; conse- 
quently, the treatment applies to systems with 
forced convection. Free convection is excluded 
since the velocity must then be calculated at the 
same time as the concentration. 

The P&let number Pe = UL/D,, where U is 
a characteristic velocity, L is a characteristic 
length, and DR is a characteristic diffusion 
coefficient, is assumed to be large. Then the 
concentration variations are confined to a thin 
diffusion layer near the electrode surface, and the 
development hinges about this fact. As a 
consequence, thegeneralproblemcan bepartially 
separated into two parts involving the con- 
centration distribution within the diffusion 
layer near the electrode and the potential distri- 
bution within the bulk medium. The concentra- 
tion polarization is not a local phenomenon 
since the concentration at the electrode surface 
depends on events upstream in the diffusion 
layer. 

The analysis thus applies to laminar boundary 
layers at high Reynolds numbers Re = UL/v. 
where v is the kinematic viscosity. The dis- 
cussion is restricted to two-dimensional and 
axisymmetric flow past the electrode, although 
the concept of a thin diffusion layer of course 
applies to other geometries as well. The usual 
boundary-layer co-ordinates are employed, 
where x denotes the distance along the electrode 
from the beginning of the diffusion layer and 
y denotes the normal distance from the electrode 
surface. Examples of such hydrodynamic bound- 
ary layers would include flat-plate electrodes or 
other submerged objects suspended in a free 
stream, rotating disk electrodes, and stagnation- 
point flows. 

In this analysis the Schmidt number SC = 
v/D, is also taken to be large since this allows 
a simplification in the expression for the velocity 
profiles (only the derivative at the surface is 
needed) and since actual Schmidt numbers are 

on the order of 1000 for the electrolytic solutions 
of interest. For certain plasma systems this 
assumption would not be applicable. For large 
Schmidt numbers, the Pellet number may be 
large even when the Reynolds number is not so 
large. The analysis thus applies not only to 
boundary-layer flows but also to low Reynolds 
number flows such as the mass-transfer entry 
section in circular conduits and between two 
plates. Such geometries, as well as boundary- 
layer flows, have been treated in the problems 
of the limiting-current distribution mentioned 
earlier. 

The present analysis, with migration effects. 
is intended to be applicable to the same class of 
hydrodynamic flows that can be and have been 
treated for mass transfer without migration in 
laminar diffusion layers in forced convection. 

Outside the diffusion layer one must solve 
Laplace’s equation for the potential with a 
current density at the boundary that agrees with 
the rate of the electrode reaction. The diffusion 
layer and the bulk medium must be calculated 
simultaneously since the current density and 
the concentration at the electrode surface must 
adjust themselves to balance the overpotential 
available after the ohmic potential drop in the 
bulk medium is subtracted from the potential 
applied to the cell. 

Results can be obtained immediately for the 
limiting current case (Section 3). By means of a 
similarity transformation one can calculate the 
current distribution on the electrode including 
the effect of migration in the diffusion layer. 
These results are given in the section on limiting 
currents, both for arbitrary two-dimensional 
and axisymmetric diffusion layers, and apply 
for large values of the Schmidt number. 

The following section (Section 4) contains a 
justification of the diffusion-layer approach 
based on a dimensionless formulation of the 
problem. The limiting-current results are used 
to obtain the order of magnitude of the current 
densities. An Appendix includes miscellaneous 
comments inserted in order to point out related 
ideas from the theory of transport in electrolytic 
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solutions which might be applied in specific 
problems. 

2. POTENTIAL DISTRIBUTION PROBLEMS 

With a known velocity profile, the concentra- 
tion and potential distributions are to be 
determined from four equations. The first 
describes the flux of a species due to migration 
in an electric field, diffusion *because of a con- 
centration gradient, and convection with the 
velocity of the fluid. 

Ni = - ziuiFciVat - D,VC, + VCi. 0) 

If there are no reactions except at electrodes, a 
material balance for each species is described 
by the equation 

aCi 
-= 
at - V-N,. (2) 

The current density i is due to the movement of 
charged species : 

i = F CZiNi. (3) 
i 

An electrolytic solution is electrically neutral, 

1 i!ici = 0, f4 

to a very good approximation except in a very 
thin region (say l&100-8, thick) near surfaces 
and really a part of the interface. The validity of 
equation (1) is restricted to dilute solutions since, 
for example, it describes properly diffusion with 
respect to the solvent but not multicomponent 
diffusion. These equations, their validity and 
simple consequences, and the extension to 
concentrated solutions have been discussed at 
length (see, for example [21]). 

These four equations can be combined to 
yield other useful equations. The concentration 
of each species follows the equation 

2 -I- v . Vci = Di V2ci + z,u,Fc, V2@ 

+ ZjUiF(VCi) . V@ * (5) 

The current density can be expressed as 

i= -tcVQt-FCZiDiVCi, (6) 
I 

where 

K = F2 c &Ci (7) 
i 

is the solution conduc&ity. Multiplication of’ 
equation (5) by ZiF and addition over i gives an 
equation for conservation of charge : 

-V.i = 0 = k.V2cE) + (VK).VQ 

f F C ZiDi V2Ci. (8) 
1 

Ionic diffusion coefficients and mobilities are 
related, at least approxi~tely, by the Nernst- 
Einstein relation 

D, = RTr.+ 0) 

We take all the diffusion coeficients to be of 
roughly the same magnitude, but all of them to be 
small in the sense that 

Pe = tJL/D, 9 1, (10) 

where D, is one of the diffusion coefficients 
(taken at a later stage in this work to be that of 
the limiting reactant). 

The bulk rn~~~urn 
It is widely known that when the P&let 

number Fe is large, mass transfer by convection 
predominates over diffusion except in a thin 
region, known as the diffusion layer, near the 
reaction surface (the electrode in this case). This 
has the consequence that outside the diffusion- 
layer equation (5) reduces to 

dci 
;jt+V.VCi=O, (11) 

that is, the concentration of a fluid element is 
constant as it moves through the solution. In 
most cases the appropriate solution to equation 
(11) is 

Ci = Ciao, (12) 

and all concentrations have their bulk values. 
For the region outside the diffusion layer, 

equation (12) expresses the solution for the 
concentrations. It is still necessary to solve for 
the potential by means of equation (8), which 
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in the bulk solution reduces to Laplace’s 
equation 

V2@ = 0. (13) 

The d@usion layer 
On the other hand, diffusion cannot be 

neglected in the diffusion layer, but other 
simplifications are still possible. On account of 
the thinness of the diffusion region, effects of 
curvature can be neglected, and we adopt the 
usual boundary-layer co-ordinates : x measured 
along the surface from its upstream end and y, 
the normal distance from the surface. In the 
diffusion layer, equation (5) simplifies to 

. (14) 

On the right side derivatives with respect to x 
have been ignored compared to the derivatives 
with respect to y. 

One more simplification is possible. We 
assume that 

SC = v/D, $ 1, (15) 

where v is the kinematic viscosity of the fluid. 
The Schmidt number SC is on the order of 1000 
for the electrolytic systems of interest here. With 
the assumption (15) that the Schmidt number is 
large, the diffusion layer is thin even when com- 
pared with any hydrodynamic boundary layer 
which may be present, and within a two- 
dimensional diffusion layer the velocity com- 
ponents can be represented as 

u, = YP(X) and u, = - $y2/Y(x), (16) 

where j?(x) is the velocity derivative at the solid 
wall, p = &Jay at y = 0, and the prime 
denotes the derivative with respect to x. These 
are the first terms in expansions of the velocity 
in y and satisfy the continuity equation 

av av, 
2 ax + - = 0. 

ay 
(17) 

With this approximation, the diffusion-layer 

equation for the concentrations is 

’ 
63) 

These equations (one for each species) are to be 
solved along with the equation of electro- 
neutrality (4) and certain boundary conditions 
which are yet to be discussed. 

Boundary conditions and matching 
Boundary conditions involve the reaction 

rate at the electrode, which we may characterize 
by the current density i, (y = 0), as well as the 
concentrations at the electrode surface and the 
electrode overpotential. Equation (8) can be 
written as 

or 

i, = i, (y = 0) - 
'di s -$ dy. (19) 

0 

Since the diffusion layer is thin, i, is approxi- 
mately constant throughout the diffusion layer, 
and this value can be used as a boundary 
condition on the solution of Laplace’s equation 
in the form 

ai i, (Y = 0) 

ay=- Km 
at y = 0, (20) 

where K, is the conductivity of the bulk solution 
and the tilda denotes quantities pertaining to 
the problem outside the diffusion layer. The 
current density i, (y = 0) is, of course, zero on 
insulators. 

Let the electrode reaction be expressed as 

where si is the stoichiometric coefficient of 
species i and Mi is a symbol for the chemical 
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formula of species i. Then the boundary condi- 
tions for the concentrations in the diffusion 
layer are 

Ci --) Cica as Y-t CQ, (22) 

Niy= -$;NRy at y = 0, (23) 

where R denotes a reactant for which sR = 0. 
(Later it will be useful to relate the flux of 
species i to the flux of the limiting reactant, 
instead of relating it to the current density.) 

.The potential variation within the diffusion 
layer is described by equation (6). Let us 
denote by g(x) the potential at the electrode 
calculated from Laplace’s equation with bound- 
ary condition (20). This can be regarded as 
representing the effect of the ohmic drop in the 
bulk solution, extrapolated to the electrode 
surface using the bulk conductivity. If I&,, is 
the potential of the electrode metal and @ in 
the bulk solution is that measured by a reference 
electrode of the same kind as the working 
electrode, then the overpotential is 

tl = Ilm&) - m(x). (24) 

This is the sum of the concentration over- 
potential qC. associated with concentration 
changes in the diffusion layer, and the surface 
overpotential fjS, associated with the hetero- 
geneous electrode reaction 

rl = VC + ?S, (25) 

but q does not in_clude any other ohmic over- 
potential since Q(x) is extrapolated to the 
electrode surface. 

The concentration and surface overpotentials 
can be defined with the aid of two reference 
electrodes, one outside the diffusion layer and 
one very near the electrode surface. These 
reference electrodes, which may be imaginary, 
follow the same electrode reaction (21) as the 
working electrode. The surface overpotential 
is defined to be the potential of the working 
electrode minus the potential of the reference 
electrode very near the electrode. For the con- 
centration overpotential, first let AV, be the 

3R 

potential of the reference electrode near the 
surface minus the potential of the reference 
electrode outside the diffusion layer, and let 
AV,, be the potential difference between these 
electrodes when there is the same current 
distribution but no concentration variations 
near the electrode. Then 

qC = AV, - A&,,, (26) 

The manner in which the potential V, of a 
movable reference electrode (relative to a fixed 
reference electrode) varies with position can be 
expressed as 

CSiV~i = - nFVV,. (27) 

where pi is the electrochemical potential of 
species i. In the dilute-solution approximation 
used here, these can be written 

Vpi = RT V In ci + ZiF VCP. (28) 

Since c SiZi = - n, equation (27) becomes 
i 

Vv,=V@- 
s.RT 
I V In Ci, 

nF 
(2% 

where V@ is given by equation (6). If we subtract 
the ohmic drop which would exist in the absence 
of concentration variations and integrate across 
the diffusion layer, we obtain the concentration 
overpotential as defined above 

Q = i, (y = 0) 

n 

where cidx) is the concentration of species i at 
the electrode surface. According to equation 
(30), the concentration overpotential is the 
potential difference of a concentration cell plus 
an ohmic contribution due to the variation of 
conductivity in the diffusion layer. 

The surface overpotential as defined above 
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should depend only on the reaction rate and the 
concentrations at the electrode surface, 

rls = !7Cci@ f, (.Y = O)], (31) 

but not on events at a distance from the surface. 
Equation (31) implies a steady state since the 
capacity of the double layer is not included, For 
unsteady processes one might write 

iy(Y = O) =f(Ci@ qs) + C$9 (32) 

where C is the capacity of the interface andf is 
the inverse of g in equation (31). The discussion 
of the particular form off and g lies in the realm 
of electrode kinetics and outside the scope of 
this paper. 

One more point remains to be brought out 
here. In the equations (18) for mass transfer in 
the diffusion layer only derivatives of potential 
with respect to y appear and not @ itself. In fact. 
these derivatives could be eliminated in favor 
of the current density by appropriate use of 
equations (6) and (8). Consequently, let us 
introduce a new potential cp in the diffusion 
layer defined as 

cp = @(x, y) - Z(X). (33) 

Then &(x) is important only in the determina- 
tion of the total overpotential. 

Summary of the calculation procedure 
Let us now summarize the calculation pro- 

cedure for the two parts of the problem, the 
bulk medium and the diffusion layer. If we know 
the reaction rate i,(y = 0) on all boundaries. 
then we can solve Laplace’s equation (13) for 
the potential in the bulk medium. On the other 
hand. if we know the reaction rate i,(y = 0) on 
all boundaries, we can solve for the concentra- 
tions and the potential variation in the diffusion 
layer from equations (4) and (18) subject to 
boundary conditions (22) and (23). 

From the solution of the problem for the 
diffusion layer one can calculate qs and qE 
according to equations (30) and (31) and hence 
can calculate S(X) from equation (24). Thus it is 

clear that both parts of the problem can be 
calculated from a knowledge of i,(y = 0). but 
these may yield different values for S(X). In 
general, it is not possible to calculate the two 
parts separately; they remain coupled through 
the boundary conditions, and it is necessary to 
determine i,.(y = 0) by some method of suc- 
cessive approximation. It may be helpful to 
modify the order of calculation so that the dif- 
fusion layer is calculated from an assumed 
i,(y = 0). which gives s(x) as a boundary 
condition for Laplace’s equation. The solution 
of Laplace’s equation then gives values of 
i,(y = 0) which can be compared with the 
assumed values. (See also [2].) 

3. LIMITING CURRENTS 

Two-dimensional dijiision layers 
When the reaction rate is limited because the 

concentration of one of the reactants falls to 
zero at the electrode surface, the current distribu- 
tion is determined by mass transfer in the 
diffusion layer, and it is possible to obtain a 
solution. Here it is not necessary to specify 
i&y = 0) in advance; instead the boundary 
condition 

cR - -0 at y=o (34) 

applies. 
Acrivos [22] realized that the Lighthill 

transformation [23] is applicable to a wide 
range of problems involving nonelectrolytic 
mass transfer at high Schmidt numbers and heat 
transfer at large Prandtl numbers. By means of 
the Lighthill similarity transformation 

5 = &/i%x)1/[9DR [ (@) W+- (35) 

the mass-transfer, diffusion-layer equations (18) 
can be reduced to ordinary differential equations 
for a steady-state problem 

(DJD&’ + 35’4 

+ (z,u~F/DR) (Ci~” + C:Cp’) = 0. (36) 

where primes denote differentiation with respect 
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to < and where cp of equation (33) replaces @. 
Equations (36) are supposed to be solved with 
equation (4) subject to the boundary conditions 

cR = 0 at 4 = 0, 

ZiUiFCi(P’ + DiCj = (SJSR) (Z,URFC,~~’ 

(37) 

+ D&J at 5: = 0, (38) 

Ci --, Cico as < -+ co. (39) 

In addition the value of v, must be specified at 
some point, but this is not really relevant for 
the solution of the problem. 

The problem outlined in equations (36) 
through (39) plus (4) is exactly the same as that 
treated earlier [l] for the effect of ionic migra- 
tion on the limiting current to a rotating disk. 
Hence we can immediately draw upon those 
results. Let us define a dimensionless current 
density at the electrode as 

Z = [G(O) + (ZRaRFcRPR) P’(0)l/cRco. 

Then the actual current density is 

(40) 

i$y = 0) 

= Z~Z%&,‘B(x~] Oils,[9&‘P) dxl+. (41) 

This shows how the reaction rate is distributed 
along the electrode, since I is independent of x. 

When there is an excess of supporting 
electrolyte, migration is not important in the 
diffusion layer, and the corresponding limiting 
“diffusion current” can be expressed by 

I, = l/l?($) = l-1198. (421 

When there is not an excess of supporting 
electrolyte, the limiting current is augmented or 
diminished by the effect of migration, and this 
effect can conveniently be expressed as Z,/Z,, 
the ratio of the limiting current to the limiting 
diffusion current, Specific calculations of the 
effect of migration on limiting currents, ex- 
pressed as 1,/Z, have already been given [l] 
for redox reactions in a ferro-ferricyanide 
system discharge of hydrogen ions from KC1 
solutions. deposition of copper from H,SO, 

and MgSO, solutions, and deposition of silver 
from HNO, solutions. 

The stagnant diffusion layer and unsteady 
mass transfer to growing mercury drops and 
from a semi-infinite stagnant medium to a plane 
electrode have been treated [l] in addition to 
the rotating disk. It is interesting that the 
correction factor for the effect of migration is 
exactly the same for the two unsteady processes 
[l], while the correction factor for two- 
dimensional diffusion layers discussed in this 
work is exactly the same as that for steady 
transfer to the rotating disk. The correction 
factor for these steady processes is, in principle, 
different from that for the unsteady processes, 
but in the earlier work [l] the difference was 
striking only for the discharge of hydrogen ions 
where the diffusion coefficient of Hf is greatly 
different from the diffusion coefficients of the 
other ions in the system. 

The results for the limiting-current case show, 
incidentally, that the concentration distribution 
of the non-limiting species in the diffusion layer 
is exactly similar to that for a rotating disk. This 
gives quantitative support to the supposition 
that integral diffusion coefficients appropriate 
for mass-transfer experiments can be obtained 
from limiting-current measurements at a 
rotating disk even though they have no obvious 
significance in terms of the fundamental trans- 
port properties of the electrolytic solution. On 
the other hand, integral diffusion coefficients 
obtained from unsteady mass transfer to an 
electrode at the end of a stagnant capillary may 
be slightly different. 

Axisymmetric dijiision layers 
Axisymmetric flow systems are also popular. 

We have seen already that the results for limiting 
currents in two-dimensional diffusion layers 
are similar to those for the rotating disk, an 
axisymmetric system. It is also obvious that these 
results apply to the diffusion layers on electrodes 
in the walls of tubes and annular conduits, 
where @ is a constant. 

In general, an axisymmetric body must be 
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characterized by the normal distance r(x) of the For tubes and annular conduits, r is independ- 
surface from the axis of symmetry. In the dif- ent of x and cancels out of equation (47). For a 
fusion layer near such an axisymmetric surface, rotating disk r = x and fi = aDx(,,/SZ/v) where 
the continuity equation reads (see, for example, a = 0.51023 and Sz is the rotation speed of the 
Schlichting f24], p. 185) disk. Equation (47) then yields 

W+J -+r!!2-*. (49) 

ax ay - (43) 
5 = &v/3&)+ (,/a/V). 

4. DIMENSIONLESS FORMULATION 

Hence the appropriate expansions of the velocity The justification for separating the diffusion 
components near the solid wall are layer from the bulk medium is that the P&let 

number is large. However, it is difficult to see 
0, = Yaw and WY = - ~y’(~~~/r (44) just what simpli~cations are justilied unless the 

where the primes denote differentiation with problem is stated in a dimensionless form. For 

respect to x. this purpose, and as a check on the preceding 

Mass transfer in the diffusion layer still analysis, let us go back and make a careful 

follows equation (14), but for large Schmidt estimate of the order of magnitude of the various 

numbers one should use the expansions (44) terms. Due to the singular nature of the problem 

instead of (16). Equation (14) becomes 
it is necessary to make these estimates both in 
the diffusion layer and in the bulk medium. 

We have taken both Pe and SC to be large. 
but we simplify the discussion by regarding the 
P&let number. which is the product of the 

For the limiting-current case, Reynolds number Re = UL/v and the Schmidt 

cR - -0 at y = 0, WI 
number. to be large because the Schmidt number 
is large. Thus we regard the Reynolds number 

and for steady problems the similarity trans- to be of order unity (that is. constant in the limit 

formation process Pe -+ XI ; the numerical value of Re 
may be as large as 2000). and consequently 

p = c>cU,iL,. (501 

reduces equation (45) to equation (36), and the 
This is particularly appropriate for flow in 

results for steady mass transfer to the rotating 
tubes and channels. 

disk can be applied to axisymmetric diffusion 
We shall take the current to be an appreciable 

layers as well. In particular, the current distribu- 
fraction of the limiting current. From equation 

tion is given by 
(41) all current densities, inside and outside the 
diffusion layer, have the order 

‘aiy(’ = ” 
’ = nFc,,(JrB) DR 

[9 j r(J$) dx]‘, (48) i = O(Pe’FDRc,,/L). (51, 
o 

From equations (7) and (9) 
the limiting diffusion current is given by equa- 
tion (421, and the correction factors for the 
effect of migration IL/Z, are exactly the same 
as those calculated earlier [l] for the rotating 
disk. 

Chunnelfloua 

K = ~F2DRc~*~RT). (52) 

Consequently, in the bulk. 

VQ, = O(i/ti) = t3(Pe*RTILF). (53) 
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In the diffusion layer x = O(L), and from 
equation (35) 

y = O(L/P&. (54) 

Generally, in the diffusion layer, 

Wax = O(c&L) 

and 
1 

aC,/ay = O(cR,Pe+/L) 

azCi/aX2 = o(c~,/L~) 
t 

(55) 

and 

a%,lay2 = 0(cR,Pe+/L2). 
J 

From equation (6) 

0 ($) = 0 (g) = O(Pe*RT/LF). (56) 

By differentiating equation (6) with respect to x, 
we find 

a2qax2 = O(Pe*RT/L’F), (57) 

but from differentiation of equation (6) with 
respect to y, 

a2qay2 = O(Pe*RT/L’F). (58) 

On the basis of these estimates, it is appropri- 
ate to define dimensionless concentrations, 
current density, and electric field : 

Qi = Ci/CRm. i* = iL/Pe*FD,c,,, 

E* = - LF V@JPe*RT. 
(59) 

Further let 

v* = v/u, fl* = BLpJ, 

K* = uRTJF’D,c,,. (W 

In the bulk medium, the appropriate dimension- 
less co-ordinates are 

t = tU/L, 2 = x/L, and 

y” = y/L. (61) 

where x and y are Cartesian co-ordinates. In 

the diffusion layer the appropriate dimension- 
less co-ordinates are 

t* = tUJPe+L, x* = XfL, and 

y* = yPe+/L, (62) 

where x and y are boundary-layer co-ordinates 
[refer to the text above equation (14)]. 

The straightforward procedure for finding 
what approximations are justified for large Pe 
is to substitute the appropriate dimensionless 
variables into the original statement of the 
problem and then let the PCclet number approach 
infinity. This procedure applied to equation (5) 
justifies equation (11) for the bulk medium and 
equation (18) for the diffusion layer. 

On the basis of the estimates of magnitude 
given above, equation (30) shows that 

VE = ONTIF) (63) 

and that all the terms in equation (30) are of the 
same order. 

On the other hand, the ohmic drop across 
the cell is, from equation (53), 

A@oi,m = O(Pe*RT JF). (W 

Thus, if one increases the stirring while operating 
at roughly the same fraction of the limiting 
current, the ohmic drop should become more 
important relative to the concentration polariza- 
tion in determining the current distribution. At 
the same time the surface overpotential in 
equation (31) should increase [see equation 
(51)], but not as fast as the ohmic drop if the 
surface overpotential is of a Tafel (logarithmic) 
type. Then 

I], = O[(RT/F) In Pe]. (65) 

These relations (63-65) may have important 
engineering consequences in the design of 
electrochemical cells. 

Boundary-layerflows 
If, on the other hand, one is dealing with 

boundary-layer flows at high Reynolds numbers 
on bodies submerged in a free stream or on a 
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rotating disk, the order of magnitude of B density within the diffusion layer. Consequently, 
becomes one cannot assume that the velocity is known 

B = OlK/fW/~1 (66) in advance, Instead he must calculate the 

and all the other magnitude estimates must be 
velocity at the same time as the mass-transfer 

changed accordingly. 
rate. Furthermore, the hydrodynamic boundary 
layer is of roughly the same thickness as the 

i = (3(RefSc*FD,c,,/L). 

VQ, = CJ(RefSciRT,/LF). WI 

Within the diffusion layer 

y = O(L/RefSc*). etc. (68) 

There is really no difference in the justification 
of the separation of the current-distribution 
problem into two parts, but the dependence on 
the Reynolds number is shown explicitly. 

5. DISCUSSION AND CONCLUSIONS 

Current and potential distribution problems 
in electrolytic cells where neither ohmic potential 
drop in the bulk solution nor mass-transfer 
limitations near the electrodes can be neglected 
are treated most conveniently by separate 
calculations for the two regions, the bulk 
medium and the diffusion layer. The two 
regions remain coupled through the boundary 
conditions. For example, in purely numerical 
calculations it would be unwise to try to use the 
same grid mesh in the two regions. It would 
either be too coarse for the diffusion layer or 
require too many mesh points for the buik 
medium. 

The analysis here has been restricted to 
laminar forced convection. A similar separation 
into two regions would also be possible for 
other situations where the concept of a thin 
diffusion layer applies, for example, turbulent 
flow, free convection, and growing mercury 
drops as used in polarographic analysis. For 
turbulent flow it would be necessary to include 
turbulent transport terms &.$@y in equation 
(14). For free convection, the principle of a thin 
diffusion layer and of the separation of the 
problem into two parts still applies, but two 
differences should be noted. The fluid velocity 
in free convection depends upon variations of 

diffusion layer, and it is not possible to use only 
the velocity derivative at the wall as in equation 
(18), even for very large Schmidt numbers. 

For current distribution problems at the 
limiting current, where the ohmic potential 
drop in the bulk solution can be neglected, the 
current is distributed along the electrode in a 
manner exactly similar to that which would be 
predicted by diffusion theory in the absence of 
ionic migration. The correction factor for the 
effect of migration in the diffusion layer depends 
on the composition of the bulk solution, but 
it is independent of the geometry of the electrode. 
These conclusions are shown to apply for large 
Schmidt numbers and for arbitrary two-dimen- 
sional and axisymmetric diffusion layers. 
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APPENDIX 

Even though no specific problems are treated 

D= 
z+u+D_ - z-u-D+ 

(71) 
z+u+ -z-u_ 

The number of cations and anions per molecule 
of salt is v+ and v-, respectively. The boundary 
conditions (22) and (23) become 

c + c, as y + co. (72) 

i 
X )’ 

nFz+v+ 
at y = 0. (73) 

With the use of equation (7) for the conduc- 
tivity, equation (30) becomes 

?e = 
i&y = 0) 

z+v+F2(z+u+ - z-u-) dy 
0 

+ g(s+ + s-) 1 Iris. (74) 
CO 

It is tempting to try to simplify this expression 
for the concentration overpotential even further. 
For steady problems equation (69) shows that 

i&lay2 = 0 at y = 0, (75) 

in this paper at currents- below the limiting and, for the purpose of evaluating the integral 
current, the additional simplifications possible in equation (74) the concentration profile 
in certain special cases should be pointed out. could be approximated as 

Binary electrolyte 
c = co + (c, - c,)y/6 for y < 6 

For the solution of a single salt, the require- c = c, for y > 6, (76) 

ment of electroneutrality (4) restricts the con- 
centrations of anions and cations so that the 

where 6 is given by 

potential can be eliminated from the two ac c, - co 
mass-transfer, boundary-layer equations (18) 

-= 
ay 6 

at y = 0. (77) 

to yield 
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Then 

ml 1 I( ) 6 --- dy = ___ 1,~_L 
c c, ccc - co co c, 

0 

(78) 

For a metal deposition reaction (s_ = 0) 
and with the use of the Nernst-Einstein relation 
(9) and the approximation (78). the expression 
for the concentration overpotential reduces to 

VC = RT[(z+ - z_)/z+z_F] 

x [ln (c,Ic,) - t+(l - co/c,)]. (79) 

where t, = z+u+/(z+u+ - z-u-) is the cation 
transference number. Except near the limiting 
current the second term is not negligible 
compared to the logarithmic’ term. At the same 
time, the approximation (76) is not justified 
by the thinness of the diffusion layer. 

Equation (79) is simplified and does not require 
a knowledge of the concentration profile in the 
diffusion layer. Nevertheless, it should be em- 
phasized that concentration polarization is not 
a local phenomenon. The concentration co at 
the surface depends on events upstream in the 
diffusion layer. If, however, one postulated a 
stagnant Nernst diffusion layer of thickness 
6(x), then concentration polarization could be 
treated at a local phenomenon. This could 

give only a qualitative representation of the 
effect of concentration polarization. 

Solutions with supporting electrolyte 
For solutions with an excess of supporting 

electrolyte, one may wish to neglect the migra- 
tion terms in equation (18). But even with less 
supporting electrolyte, it should be possible to 
neglect conductivity variations in the diffusion 
layer so that the concentration overpotential 
(30) becomes 

rlC = C[ s.RT LlnCi, 
nF cio 

+ F (Cim - CiO) 
1 

(80) 
m 

High rates of stirring 
For very vigorous stirring and currents 

considerably below the limiting current, the 
concentrations can be taken to be uniform even 
in the diffusion layer. Then the current distribu- 
tion is found by solving Laplace’s equation 
subject to the boundary condition 

S(x) = &t(x) - rlS 

= I&t(x) - g[ci,, i,(y = O)]. (81) 

where i,(y = 0) is related to the normal deriva- 
tive of the potential by equation (20). Laplace’s 
equation and this (frequently) nonlinear bound- 
ary condition define the problem of the so- 
called “secondary current distribution”. 

R&mm&-Lea problemes de distribution du potentiel dans lea cellules tlectrolytiques peuvent Btre divises 
en deux parties, la partie centrale ou I’bquation de Laplaoe est valable et la couche de diffusion ou la con- 
vection, k migration et la diffusion sont tous des modes importants de transport de masse. Les problknes 
dans ces deux domaines doivent encore hre rtsolus simultantment puisque lea concentrations et la 
densitt de courant a la surface de l’tlectrode doivent s’ajuster d’elles-memes au potentiel suppltmentaire 
disponible calcule a partir de la solution de I’tquation de Laplace. 

Des rtsultats sp&ifiques sont obtenus pour le courant limite avec des couches de diffusion bidimension- 
nelles et de revolution arbitraires. Le facteur de correction pour l’effet de la migration a travers la couche 
de diffusion est exactement le mZme que celui calcule auparavant pour une electrode toumante en forme 

de disque. 

ZBasaung-Potentialverteilungsprobleme in elektrolytischen Zellen kiinnen in 2 Teile xerlegt 
werden; hir den Hauptteil gilt die Laplace-Gleichung ftir die Diffusionsschicht sind Konvektion, Wander- 
ung und Diffusion fiir den Stofftransport von Bedeutung. Die Probleme in diesen beiden Bereichen miissen 
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noch gleichzeitig gel&t werden, da sich Konzentrationen und Stromdichte an der Elektrodenoberflbhe 
dem verhigbaren Gesamtpotential anpassen, wie es sich aus der Losung der Laplace-Gleichung ergibt. 

Spezielle Ergebnisse wurden erhalten fiir den Grenzstrom bei beliebigen, zweidimensionalen und 
achssymmetrischen Diffusionsschichten. Ah Korrekturfaktor hir den Einfluss der Wanderung in der 
Diffusionsschicht ergibt sich genau der gleiche Wert wie friiher fiir die rotierende Scheibenelektrode. 

AarroTaqan-:%tfiaqn 110 pacnpe~eneaI4tO lloTeIlqIlana 3 aneHTpnYecttOi H~enKe MOXHO 
pa3nenuTb Ha zse 06jIacTn: ocHoBHa8s iwacca WH~K~CTR, rfie cnpaBeanMB0 ypaBKewe 

jIannaCa,aAH~~YaMOHHbIft CJIOi%,I'Re MaCcOO6MeH OCyLlJeCTBJlHeTCR KOHBeKqlleti,MW'paL(Mei? 

1~ ~IW$@y3Ilei%. OAHaKO, aafiawi AJIFI o6enx o6nacTe21 HeO6XOAHMO peILIaTb COBM~CTHO, no- 

CK0JIbK-j' KOHUeHTpaqRH II rIJIOTHOCTb TOKa Ha rIOBepXHOCTI4 3JIeKTpOAa AOJIlKHa M3MeHRTbCfI 

B 3aBMCMMOCTH OT BeJIIPiHHbI nepeHanpRFKeHHfl, paCC'iIITaHHOr0 n0 ypaBHeHt4IO aaKJIaCa. 

nOJIyseHb1 AaHHbIe rI0 npeJ&eJlbHOMy TOKJ' RJIR npOR3BOJIbHbIX RByMepHbIX W OCeCMM- 

MeTpWiHbIX~R~@Y3MOHHbIX CJIOeB. nOKa3aH0,YTO nOnpaBOYHbIfi MHOH(MTeJIb,Yq~iTblBaH)~Ha 

DJIHFIHCIt? MEIrpaqMN B A@@Y3ROHHOM CJIOe paBeH KOe@I$I4I(l~eHT)',paCCYHTaHHOMj' paHee L[JIfl 

3JIeKTpOHa C Bpa~aIO~lIMCR KHCKOM. 


